A Study of Static Analysis Tools for Ethereum
Smart Contracts

Anténio Pedro Cruz Monteiro*
Instituto Superior Técnico, Universidade de Lisboa
apedrocruz @tecnico.ulisboa.pt

Abstract—Blockchain technology has been receiving consid-
erable attention from industry and academia, for it promises
to disrupt the digital online world by enabling a democratic,
open, and scalable digital economy based on decentralized dis-
tributed consensus without the intervention of third-party trusted
authorities. Smart contracts, computer programs executed on
top of a blockchain, are at the core of this technology, for
they allow the creation of new distributed applications. Millions
of smart contracts have been deployed on Ethereum, a major
blockchain platform for smart contracts, and although they are
seen with great potential, smart contracts have been known to
have several security problems. Recent attacks on smart contracts
and critical vulnerabilities discovered show us the huge financial
loss they can impose on the users and warn us for the necessity of
having methods that lead to secure and reliable implementations.
Over the last few years several static analysis tools have been
developed specifically targeting Ethereum smart contracts. In this
dissertation, we present a review of state-of-the-art static analysis
tools and introduce SmartBugs, a new extendable execution
framework, created to facilitate the integration and comparison
between multiple analysis tools and the analysis of Ethereum
smart contracts. SmartBugs includes two datasets with a total of
47,661 Solidity smart contracts. We use SmartBugs to perform
an empirical evaluation of 7 state-of-the-art automated analysis
tools using the two new datasets. Our study shows that Mythril is
the most sensitive and Slither has the best precision. In addition,
we present an extension that improves SmartCheck.

Index Terms—Blockchain, Ethereum, Smart Contracts, Static
Analysis, Vulnerabilities, Solidity

I. INTRODUCTION

Blockchain technology and cryptocurrencies, introduced by
Bitcoin [2], have gained and continue to gain attention and
popularity. Blockchain, a shared, decentralized, cryptographi-
cally secure and immutable digital ledger maintained by nodes
in a peer-to-peer network is considered to be one of the most
prominent technologies introduced in this century. Cryptocur-
rencies, which have become a global phenomenon, use this
data structure as a public ledger to record all valid transactions.
Blockchain acts as public append-only database that keeps
a permanent and immutable record of digital transactions
without relying on trust to secure it, instead it is secured by a
peer-to-peer network using a consensus algorithm.

One of the blockchain appeals is being a technology that
promises secure distributed computations even in the absence
of trusted third parties. These computations, called smart
contracts — interactions between mutually distrusting entities,

* Parts of this work were done in collaboration with INESC-ID researchers,
as documented in [1].

are automatically enforced by the consensus mechanism of
the blockchain, using incentives and cryptography. These
immutable pieces of code, when deployed on the blockchain,
allow parties to manifest contract terms in the form of program
code.

Ethereum [3]], which was introduced with the proclaimed
intention of being a platform aimed to support smart con-
tracts, is the most famous network to deploy smart contracts,
where they written in a Turing-complete language. Solidity
is the most used language by developers to create smart
contracts on Ethereum. While smart contracts can represent
a great improvement to our society model, as they do not
rely on gained trust, they have shown several major security
vulnerabilities. In a study performed on nearly one million
Ethereum smart contracts, 34,200 of them were flagged as
vulnerable [4]]. A different study showed that of 719,366 smart
contracts analysed, also in Ethereum, 8,833 (around 46%)
were flagged as vulnerable [5]. A need to review and improve
smart contracts implementation is therefore needed and it is
a key element to enable massive adoption of smart contracts
technology.

A. Objectives and Contributions

We propose to explore and discuss smart contracts and their
secure implementation using static analysis tools, which can
be used to analyse the correctness of the code. The main
objectives are to study analysers that verify Ethereum smart
contracts and introduce new tools and datasets to facilitate
the use of static analysis in research and smart contracts
development.To achieve these objectives, we introduce a novel,
extendable, and easy-to-use execution framework, SmartBugs,
that simplifies research and execution of automated analysis
tools for smart contracts. With this framework we also in-
troduce a dataset of 143 annotated vulnerable Solidity smart
contracts, SBCURATED, setting the ground for fair compar-
isons and a reference for the research community to use for
benchmarks on analyses tools.

We use SmartBugs to execute 7 state-of-the-art static analy-
sis tools on two datasets, sBCURATED 454 SBWILD, with a to-
tal of 47,587 contracts being analysed. The second dataset con-
tains all available smart contracts in the Ethereum blockchain
that have Solidity source code available on Etherscarﬂ (a total

IEtherscan: https://etherscan.io

https://etherscan.io

of 47,518 contracts). We perform an empirical analysis of this
7 tools on this datasets and present a discussion of the results.
To conclude, we present an extension of SmartCheck, a

state-of-the-art static analysis tool, improving its detection of
vulnerabilities and adding the capability to detect a category of
vulnerabilities that previous was not in the scope of detection
of SmartCheck. Throughtout this work, we propose to answer
the following research questions:

RQ1. What are the state-of-the-art analysis tools for Ethereum

smart contracts?

What is the precision of the state-of-the-art analysis tools

in detecting vulnerabilities on Ethereum smart contracts?

Which categories of vulnerabilities are most detected?

How many vulnerable contracts are present in the

Ethereum blockchain?

How long do the tools require to analyse the smart

contracts?

How can we improve a state-of-the-art analysis tool?

RQ2.

RQ3.
RQ4.

RQS.

RQ6.
Our main contributions can be summarized as follows:

« We review, explain and discuss vulnerabilities found on
Ethereum smart contracts;

e We present an overview of state-of-the-art automated
smart contract analysers focused on Ethereum smart
contracts;

« We introduce SmartBugs, an extendable execution frame-
work designed to facilitate the integration and compari-
son between multiple analysis tools and the analysis of
Ethereum smart contracts;

« We present sBCURATED 5 dataset of 143 annotated
vulnerable Solidity smart contracts with a defined vul-
nerability taxonomy as a reference dataset to the research
community;

o We provide an analysis of the execution of 7 state-of-
the-art analysis tools with SmartBugs on 47,587 smart
contracts;

« We extend SmartCheck, a state-of-the-art static analysis
tool, to improve detection of vulnerabilities.

II. BACKGROUND
A. Blockchain

In 2008 Satashi Nakamoto proposed Bitcoin, “a system
for electronic transactions without relying on trust” [2],
presenting a decentralized peer-to-peer network using proof-
of-work, a consensus protocol, as a solution to the double-
spendinﬁ problem. In this scenario, bitcoin (BTC) represents
a cryptographic currency that can be exchanged between
untrusted parties and the key idea is that the exchange of
bitcoins between these entities is registered in a append-only
database maintained by a network of peers that can not be
tampered. This append-only database is built by chaining
multiple validated blocks that contain transactions and is
referred as blockchain. Blockchains can be divided in two

2Double-spending is the result of successfully spending the same digital
token more than once. It is a potential flaw in a digital cash systems in which
the same single digital token can be spent more than once.

different types: permissionless and permissioned. Bitcoin is
the first permissionless blockchain, meaning that everyone
can participate and interact with the network. Permissioned
blockchains, on the other hand, are more restricted and the
participants are controlled.

B. Smart Contracts

Smart contracts are pieces of code, deployed on a
Blockchain, where it is possible to codify agreements and
trust relations. They are able to keep a record of the state,
exchange digital assets, take user input and store data. Smart
contracts are stored and executed by the network of nodes
who update the state of the smart contract on the blockchain
when consensus on the outcome of the execution is reached.
Users can exchange value or data and interact with contracts by
publishing signed transactions to the network. Smart contract
execution sometimes requires heavy computational tasks and
since they are performed by computers (nodes) in the network,
each computational task has a cost, which is called gas in
Ethereum. These execution fees represent the cost paid by the
user to the miners to execute code.

C. Ethereum

Ethereum [3]] was introduced in 2014 and was the first
to introduce a Turing-complete language in a blockchain
platform, creating a second generation of blockchains. It has
its own cryptocurrency, called Ether (ETH), and smart con-
tracts represent one of the main components of the platform.
Ethereum, like Bitcoin, is a permissionless blockchain where
any network participant is allowed to interact and perform
transactions within the network, such as transfer Ether or
interact with a smart contract deployed on the network.

Smart contracts in Ethereum are compiled into a stack-based
bytecode language and then executed by the Ethereum Virtual
Machine (EVM). EVM is a turing complete virtual machineﬂ
specific to Ethereum that processes every transaction. Every
participating node in the network runs their own instance
of the EVM making possible the execution of code in a
trustless environment. Solidity is the most used language
by developers to create smart contracts on Ethereum. It is
an object-oriented, high-level JavaScript-like language and is
compiled to EVM bytecode to be executed by the EVM.
Solidity is statically typed, supports inheritance, libraries and,
like many programming languages, it offers common features
like control flow structures, types, functions or structs. Several
examples of Solidity code are shown in the next section.

D. Static Analysis Tools

Our research started off by using the survey of Angelo
et al. [|6] and we extended their list of tools by searching the
academic literature and the internet for other tools. Through
our research we were able to find more eight tools that suited
our discussion. We ended up with the 35 static analysis tools
that are listed below in Table [Il

3EVM code can encode any computation that can be conceivably carried
out, including infinite loops.

Table I: Tools identified as potential candidates for this study.

#

Tools

1

O 00NN AW

contractLarva
(7]

E-EVM [8]
Echidna

Erays [9]
Ether [10]
Ethersplay
EtherTrust [[11]
EthIR [12]
FSolidM [13]

Gasper [14]
HoneyBadger
(15]

KEVM [16]

MadMax [[17]]
Maian [4]
Manticore [[18]]
Mythril [19]

Octopus
Osiris [20]
Oyente [5]
Porosity [21]
rattle
ReGuard [22]
Remix

SASC [23]
sCompile [24]]
Securify [25]]
Slither [26]
Smartcheck
[27]
Solgraph
Solhint
SolMet [28]]

teEther [29]
Vandal [30]
VeriSol [31]]
Zeus [32]

Tool URLs
https://github.com/gordonpace/
contractLarva
https://github.com/pisocrob/E-EVM
https://github.com/crytic/echidna
https://github.com/teamnsrg/erays

N/A
https://github.com/crytic/ethersplay
https://www.netidee.at/ethertrust
https://github.com/costa-group/EthIR
https://github.com/anmavrid/
smart-contracts

N/A

https://github.com/christoftorres/
HoneyBadger
https://github.com/kframework/
evm-semantics
https://github.com/nevillegrech/MadMax
https://github.com/MAIAN-tool/MAIAN
https://github.com/trailofbits/manticore/
https://github.com/ConsenSys/
mythril-classic
https://github.com/quoscient/octopus
https://github.com/christoftorres/Osiris
https://github.com/melonproject/oyente
https://github.com/comaeio/porosity
https://github.com/crytic/rattle

N/A

https://github.com/ethereum/remix

N/A

N/A

https://github.com/eth-sri/securify
https://github.com/crytic/slither
https://github.com/smartdec/smartcheck

https://github.com/raineorshine/solgraph
https://github.com/protofire/solhint
https://github.com/chicxurug/
SolMet-Solidity-parser
https://github.com/nescio007/teether
https://github.com/usyd-blockchain/vandal
https://github.com/microsoft/verisol

N/A

Not all the identified tools are well suited for our discussion.
Only the tools that met the following five inclusion criteria are
relevant to be discussed:

e Criterion #I. [Available and CLI] The tool is publicly
available and supports a command-line interface (CLI).

o Criterion #2. [Compatible Input] The tool takes as input
a Solidity contract. This excludes tools that only consider
EVM bytecode.

o Criterion #3. [Only Source] The tool requires only the
source code of the contract to be able to run the analysis.
This excludes tools that require a test suite or contracts
annotated with assertions.

e Criterion #4. [Vulnerability Finding] The tool identifies
vulnerabilities or bad practices in contracts. This excludes
tools that are described as analysis tools, but only construct
artifacts such as control flow graphs.

o Criterion #5. [Static Analysis] The tool only executes static
analysis techniques to find security issues.

After inspecting all 35 analysis tools presented in Table
Table defines the 7 tools that meet the inclusion criteria
outlined. Table [M] presents the excluded tools and which
criteria they did not meet.

Tools that violate criteria

Ether, Gasper, ReGuard, Remix, SASC,
sCompile, teEther, Zeus

MadMax, Vandal

Echidna, VeriSol

contractLarva, E-EVM, Erays, Ethersplay,
EtherTrust, EthIR, FSolidM, KEVM, Oc-
topus, Porosity, rattle, Solgraph, SolMet,
Solhint

contractLarva, Echidna, MAIAN, Manti-
core, ReGuard

Inclusion criteria
Available and CLI (C1)

Compatible Input (C2)
Only Source (C3)
Vulnerability Finding (C4)

Static Analysis (CS5)

Table II: Excluded analysis tools based on our inclusion
criteria.

Tools that meet criteria HoneyBadger, Mythril, Osiris, Oyente, Se-

curify, Slither, Smartcheck

Table III: Included analysis tools based on our inclusion
criteria.

HoneyBadger [15] is an Oyente-based (see below) tool that
employs symbolic execution and a set of heuristics to pinpoint
honeypots in smart contracts. When HoneyBadger detects that
a contract appears to be vulnerable, it means that the developer
of the contract wanted to make the contract look vulnerable,
but is not vulnerable.

Mythril [[19]] analyses EVM bytecode and relies on concolic
analysis, which is a hybrid analysis technique that performs
symbolic execution along a concrete execution path, to find
several types of security issues.

Osiris [20] extends Oyente to improve the detection of in-
teger bugs. It combines symbolic execution and taint analysis,
in order to accurately find integer bugs in Ethereum smart
contract.

Oyente [5] is one of the first static analysis tool for
Ethereum smart contracts and has been forked by several other
projects, including HoneyBadger and Osiris. It runs symbolic
execution on EVM bytecode to identify vulnerabilities. Deter-
mines which inputs cause which program branches to execute
to find potential security vulnerabilities. Oyente works directly
with EVM bytecode without access high level representation.

Securify [25] statically analyses EVM bytecode to infer
relevant and precise semantic information about the contract
using the Souffle Datalog solver. It then checks compliance
and violation patterns that capture sufficient conditions for
proving if a property holds or not.

Slither [26] is a static analysis framework that converts
Solidity smart contracts into an intermediate representation
called SlithIR and applies known program analysis techniques
such as dataflow and taint tracking to extract and refine
information.

https://github.com/gordonpace/ contractLarva
https://github.com/gordonpace/ contractLarva
https://github.com/pisocrob/E-EVM
https://github.com/crytic/echidna
https://github.com/teamnsrg/erays
https://github.com/crytic/ethersplay
https://www.netidee.at/ethertrust
https://github.com/costa-group/EthIR
https://github.com/anmavrid/smart-contracts
https://github.com/anmavrid/smart-contracts
https://github.com/christoftorres/ HoneyBadger
https://github.com/christoftorres/ HoneyBadger
https://github.com/kframework/evm-semantics
https://github.com/kframework/evm-semantics
https://github.com/nevillegrech/MadMax
https://github.com/MAIAN-tool/MAIAN
https://github.com/trailofbits/manticore/
https://github.com/ConsenSys/mythril-classic
https://github.com/ConsenSys/mythril-classic
https://github.com/quoscient/octopus
https://github.com/christoftorres/Osiris
https://github.com/melonproject/oyente
https://github.com/comaeio/porosity
https://github.com/crytic/rattle
https://github.com/ethereum/remix
https://github.com/eth-sri/securify
https://github.com/crytic/slither
https://github.com/smartdec/smartcheck
https://github.com/raineorshine/solgraph
https://github.com/protofire/solhint
https://github.com/chicxurug/SolMet-Solidity-parser
https://github.com/chicxurug/SolMet-Solidity-parser
https://github.com/nescio007/teether
https://github.com/usyd-blockchain/vandal
https://github.com/microsoft/verisol

Smartcheck [27] is a static analysis tool that looks for
vulnerability patterns and bad coding practices. It runs lexical
and syntactical analysis on Solidity source code.

III. SMARTBUGS

There has been some effort from the research community
to develop automated analysis tools that locate and eliminate
vulnerabilities in smart contracts 5], [25], [27], [33]]. However,
it is not easy to compare and reproduce that research: even
though several of the tools are publicly available, the datasets
used are not. If a developer of a new tool wants to compare the
new tool with existing work, the current approach is to contact
the authors of alternative tools and hope that they give access
to their datasets (as done in, e.g., [34]]). Furthermore, most of
smart contracts static analysers are required to be installed, and
some even require you to install dependencies they rely on.
Others are not available for all OS’s. Executing smart contract
analysis with multiple tools, running and installing each one
individually can be an excruciating process and consume
unnecessary time. There is a need to ease the execution of
static analysers and provide a simple interface where the user
could analyse multiple contracts with multiple tools without
requiring installation of any of the tools.

We present SmartBugs to address these problems. Smart-
Bugs is an extensible, and easy to use execution framework
that simplifies research on automated analysis techniques for
smart contracts and executes these tools on the same execution
environment. To be able to execute and compare automated
analysis tools, hence setting the ground for fair comparisons,
we provide SBCURATED: 3 dataset of 143 manually annotated
Solidity smart contracts that can be used to evaluate the
precision of analysis tools. Developers can use it to evaluate
their automated analysis tools, create benchmarks and easily
compare them with state of the art, alternative tools. Smart-
Bugs provides the possibility to easily integrate analysis tools,
thus enabling reproducibility of the results for these tools.
Once tools are added to SmartBugs, it is easy to compare
their performance and accuracy.

SmartBugs has the following features:

e A plugin system to easily add new analysis tools, based

on Docker images;

o A plugin system to easily add new named datasets;

« Bulk analysis with any number of tools available;

e CLI and WUI Dashboard;

« Parallel execution of the tools to speed up the execution

time; [Contribution]

e A parser mechanism that normalizes the way the tools

are outputting the results; [Contribution]

The last two items marked with [Contribution] resulted in
external contributions done to SmartBugs by co-authors of
Durieux et al. [1] to automate results in the context of the
analysis discussed in Section [V]

A. Availability

SmartBugs comes with 10 tools ready to be executed:
HoneyBadger, Maian, Manticore, Mythril, Osiris, Oyente,

Securify, Slither, SmartCheck, Solhint. However, throughout
this work we only focus on the seven tools that met the criteria
presented in Section We excluded Maian, Manticore and
Solhint.

The framework and S
repositories of SmartBugs m

BCURATED 46 available in GitHub as

B. sBCURATED . 4 Dasaset of 143 Vulnerable Smart Contracts

All contracts and tools present in SmartBugs are publicly
available. The collection methodology is explained in this
section. The dataset follows the taxonomy of DASP 10 [35].
Our objective in constructing SBCURATED ya5 to provide a
reliable dataset with a collection of vulnerabilities designed to
be reproducible, follow a known taxonomy and to serve as a
reference dataset to the research community. The last category
presented in DASP 10 is Unknown Unknowns, which, repre-
sents future and undiscovered vulnerabilities. This category is
not useful in the context of mapping existent vulnerabilities,
so we opted to map vulnerabilities that did not fit any other
of the nine categories, i.e. categories that are not identified in
DASP 10, in this category. For example, vulnerabilities such as
uninitialized data and the possibility of locking down Ether are
mapped to this category. This category, Unknown Unknowns,
will be referred as Other to avoid confusion and simplify the
description.

Table IV: Categories of vulnerabilities available in the dataset.
(computed using cloc 1.82).

Category Contracts | Vulns | LoC
Access Control 17 19 899
Arithmetic 14 24 304
Bad Randomness 8 31 | 1,079
Denial of service 6 7 177
Front running 4 7 137
Reentrancy 31 32 | 2,164
Short addresses 1 1 18
Time manipulation 5 7 100
Unchecked low level calls 53 60 | 4055
Other 3 3 115
Total 143 191 | 9,048

SBCURATED (egion was driven by the following objectives:
Reproducibility, Real-world relevance, Diversity and Custom
filtering.

SBCURATED a4 created by collecting smart contracts from
three different sources: GitHub repositories, Blog posts that
analyse contracts and the Ethereum network. Most of contracts
were collected from GitHub repositories and the Ethereum net-
work. We ensure the traceability of each contract by providing
the URL from which they were taken and its author, where

possible.

“SmartBugs spCURATED).
smartbugs

>SmartBugs WUI: https://github.com/smartbugs/smartbugs-dashboard

(including https://github.com/smartbugs/

https://github.com/smartbugs/smartbugs
https://github.com/smartbugs/smartbugs
https://github.com/smartbugs/smartbugs-dashboard

1) sBCURATED ¢isicrics: The dataset contains 143 con-
tracts and 191 manually tagged vulnerabilities, divided into
10 categories of vulnerabilities. Table [[V| presents information
about the 143 contracts. Each line contains a category of
vulnerability. For each category, we provide the number of
contracts available within that category and the total number
of vulnerabilities and number of lines of code in the contracts
of that category.

IV. FRAMEWORK ARCHITECTURE

SmartBugs is written Python3 and relies on docker im-
ages to execute the tools. SmartBugs requires Docker and
Python3 with the modules PyYAML, solidity_parser, and
docker. SmartBugs works with docker images available on the
Docker Hub or locally. In order to be able to add a tool to
SmartBugs, a docker image of the tool must be available.

Docker f,
Hib &

Tool's Image

SmartBugs

wul Tools Configurations
Dashboard
CLI 1

& —>| Runner

User N

Defined

Smart
Contracts

Figure 1: SmartBugs Architecture

SmartBugs is composed of five main parts plus a web-based
user interface, that is integrated to interact with SmartBugs,
as seen in Figure [I}

A. Methodology for adding tools

Addition of tools in SmartBugs is designed to be simple
and practical, allowing the user to control the execution of
the tools according to their needs. Each tool plugin contains
the configuration of the tools. The configuration contains the
name of the Docker image, the name of the tool, the command
line to run the tool, and, optionally, the description of the tool
and the location of the output of results. Once a docker image
providing the tool is available, adding the tool to SmartBugs
consists of adding a new configuration (an .YAML file) file.

B. Methodology for filtering bugs

SmartBugs supports the definition of named datasets, which
is intended to represent subsets of contracts that share a
common property. For example, a named dataset already
provided by default is reentrancy: it corresponds to con-
tracts that are identified as being vulnerable to reentrancy
attacks. Named datasets can be specified in a configuration file
(config/dataset/dataset.yaml). The default configuration file
provides the named sets shown in Table To add a custom
named dataset, the user simply has to alter the configuration
file by adding a name and the correspondent list of paths. The
path can be a directory, a file, or a list of both. An example
is shown below.

C. CLI & WUI

SmartBugs provides a command line interface that allows
users to query the datasets defined and run different analysis
tools on sets of contracts. The user can also get information
about the tools, if provided, skip an execution that already
has results, specify the number of processes to use during the
analysis (by default 1) and list the named datasets and tools
available. SmartBugs also offers a Web-based UI (WUI) built
on top of SmartBugs itself. This dashboard provides the user
easy access to the list of tools, named datasets available and
the vulnerabilities detected by each tool available mapped to a
category of DASP 10. The user has three options to analyse a
smart contract: The user can paste or write a smart contract in
a text box; The user can import a smart contract by uploading
it to SmartBugs; The user can run tools on defined datasets.
After the execution of the analysis the dashboard will present
a graph with the number of security issues found by each tool,
and for each tool present the issues found.

V. ANALYSIS OF 47,587 SMART CONTRACTS

We used SmartBugs to execute the 7 automated analysis
tools on two datasets. The first dataset is SBCURATED, intro-
duced in the previous chapter. At the time of the execution
of this study SBCURATED g composed of 69 Solidity
smart contracts with 115 manually annotated vulnerabilities
(as shown in Table M}, not 143 smart contracts as presented
in Section All mentions to SBCURATED throughout
this section are referring to this version. The second dataset,
coined SBWILD contains all available smart contracts in the
Ethereum Blockchain that have Solidity source code available
on Etherscarf] (a total of 47,518 contracts). We have executed
7 state-of-the-art automated static analysis tools on the two
datasets and analysed the results in order to provide a fair
point of comparison for future smart contract analysis tools.
In total, the execution of all the tools required approximately
330 days and 15 hours to complete 333,109 analyses.

All the logs and the raw results of the analysis are available
in GitHub as a repository of SmartBugs ﬂ

A. Tools’ Setup

For this experiment, we set the time budget to 30 minutes
per analysis. In order to identify a suitable time budget for
one execution of one tool over one contract, we first executed
all the tools on SBCURATED dataset. We then selected a time
budget that is higher than the average execution time. If the
time budget is spent, we stop the execution and collect the
partial results of the execution. During the execution of our
experiment, no tool faced timeouts.

B. sBCURATED . ppqlvsis of 69 Smart Contracts

Our goal is to compute the ability of the 7 tools in detecting
the vulnerabilities present in . We executed the 7 tools on
the 69 contracts, then we extracted all the vulnerabilities that

©Etherscan: https://etherscan.io
7 Analysis results: |https:/github.com/smartbugs/smartbugs-results

https://etherscan.io
https://github.com/smartbugs/smartbugs-results

Category HoneyBadger Mythril Osiris Oyente Securify Slither | SmartCheck Total
Access Control 0/19 0% 4/19 21% 0/19 0% 0/19 0% 0/19 0% 4/19 21% 2/19 11% 5/19 26%
Arithmetic 0/22 0% 15/22 68% 11722 50% 12/22 55% 0/22 0% 0/22 0% 1722 5% 19/22 86%
Denial of Service 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/ 7 0%
Front Running 0/7 0% 2/7 29% 0/7 0% 0/7 0% 2/7 29% 0/7 0% 0/7 0% 2/'729%
Reentrancy 0/8 0% 5/8 62% 5/8 62% 5/8 62% 5/8 62% 7/8 88% 5/8 62% 7/ 8 88%
Time Manipulation 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 2/5 40% 1/5 20% 3/'5 60%
Unchecked Low Level Calls 0/12 0% 5/12 42% 0/12 0% 0/12 0% 3/12 25% 4/12 33% 4/12 33% 9/12 75%
Other 2/3 67% 0/3 0% 0/3 0% 0/3 0% 0/3 0% 3/3 100% 0/3 0% 3/ 3 100%
Total 2/115 2% | 31/11527% | 16/115 14% | 17/115 15% | 10/115 9% | 20/115 17% | 13/115 11% | 48/115 42%

Table V: Vulnerabilities identified per category by each tool.

Category HoneyBadger | Mythril | Osiris | Oyente | Securify | Slither | SmartCheck | Total
Access Control 0 24 0 0 6 20 3 53
Arithmetic 0 92 62 69 0 0 23 246
Denial of Service 0 0 27 11 0 2 19 59
Front Running 0 21 0 0 55 0 0 76
Reentrancy 0 16 5 5 32 15 7 80
Time Manipulation 0 0 4 5 0 5 2 16
Unchecked Low Level Calls 0 30 0 0 21 13 14 78
Other 5 32 0 0 0 28 8 73
Total 5 215 98 90 114 83 76 681

Table VI: Total number of detected vulnerabilities by each tool, including vulnerabilities not tagged in the dataset.

were detected by the tools into a JSON file and we mapped
the detected vulnerabilities by the tools to a category of
vulnerabilities (see Table[[V). Finally, we were able to identify
which vulnerabilities the tools detect. Unfortunately, we found
out that none of the 7 tools were able to detect vulnerabilities
of the categories Bad Randomness and Short Addresses.

The results of the analysis of SBCURATED are presented in
Table [V] and Table [VI} The first table presents the number of
known vulnerabilities that have been identified. A vulnerability
is considered as identified when a tool detects a vulnerability
of a specific category at a specific line, and it matches the
vulnerability that has been annotated in the dataset. Each row
of Table [V] represents a vulnerability category, and each cell
presents the number of vulnerabilities where the tool detects
a vulnerability of this category. This table summarizes the
strengths and weaknesses of the current state of the art of smart
contract analysis tools. It shows that the tools can accurately
detect vulnerabilities of the categories Arithmetic, Reentrancy,
Time Manipulation, Unchecked Low Level Calls and Other.
However, they were not accurate in detecting vulnerabilities
of the categories Access Control, Denial of Service, and Front
Running. The categories Bad Randomness and Short Addresses
are not listed, since none of the tools are able to detect
vulnerabilities of these types.This shows that there is still room
for improvement and, potentially, for new approaches to detect
vulnerabilities of the ten DASP categories.

Table [VI| also shows that the tools offer distinct accuracies.
Indeed, the tool Mythril has the best accuracy among the 7
tools. Mythril detects 27% of all the vulnerabilities when the
average of all tools is 12%. Moreover, Mythril, Slither, and
SmartCheck are the tools that detect the largest number of
different categories (5 categories). Despite its good results,
Mpythril is not powerful enough to replace all the tools: by
combining the detection abilities of all the tools, we succeed
to detect 42% of all the vulnerabilities. However, depending

on the available computing power, it might not be realistic to
combine all the tools. Therefore, we suggest the combination
of Mythril and Slither, since it detects 42 (37%) of all
the vulnerabilities. This combination offers a good balance
between performance and execution cost.

We now consider all the vulnerability detections and not
only the ones that have been tagged in SBCURATED Typie
[VI] presents the total number of vulnerabilities detected by the
tools. This table allows the comparison of the total number
of detected vulnerabilities with the number of detected known
vulnerabilities shown in Table [V] Unsurprisingly, the more
accurate a tool is in detecting known vulnerabilities, the more
accurate it is at detecting unknown vulnerabilities.

C. sBWVILD . Vulnerabilities in Production Smart Contracts

The analysis of the contracts in SBWILP followed the same
methodology as in the previous analysis of SBCURATED
however, for SBWILD, we do not have an oracle to identify
the vulnerabilities.

Table [VII] presents the results of executing the 7 tools on
the 47,518 contracts. It shows that the 7 tools are able to
detect eight different categories of vulnerabilities. In total,
44.549 contracts (93%) have at least one vulnerability detected
by one of the 7 tools. Such a high number of vulnerable
contracts suggests the presence of a considerable number
of false positives. Oyente is the approach that identifies the
highest number of contracts as vulnerable (73%), mostly due
to vulnerabilities in the Arithmetic category.

Since we observed a potentially large number of false
positives, we analysed to what extent the tools agree in vul-
nerabilities they flag. The hypothesis is that if a vulnerability
is identified exclusively by a single tool, the probability of
it being a false positive increases. Arithmetic the category
with the highest consensus between four and more tools: 937
contracts are flagged as having an Arithmetic vulnerability

Category HoneyBadger Mythril Osiris Oyente Securify Slither | SmartCheck Total
Access Control 0 0% 1,076 2% 0 0% 2 0% 614 1% 2,356 4% 384 0% 3,758 7%
Arithmetic 10% | 18,51539% | 13,922 29% | 34,306 72% 0 0% 0 0% 7,430 15% | 37,590 79%
Denial of Service 0 0% 0 0% 485 1% 880 1% 0 0% 2,555 5% | 11,621 24% | 12,419 26%
Front Running 0 0% 2,015 4% 0 0% 00% | 7,217 15% 0 0% 0 0% 8,161 17%
Reentrancy 19 0% 8,454 17% 496 1% 308 0% 2,033 4% 8,764 18% 847 1% | 14,747 31%
Time Manipulation 0 0% 0 0% 1,470 3% 1,452 3% 0 0% 1,988 4% 68 0% 4,005 8%
Unchecked Low Calls 0 0% 443 0% 0 0% 0 0% 592 1% | 12,199 25% 2,867 6% | 14,655 30%
Other 26 0% | 11,126 23% 0 0% 0 0% 561 1% 9,133 19% 14,113 29% | 28,091 59%
Total 46 0% | 22,994 48% | 14,665 30% | 34,764 73% | 8,781 18% | 22,269 46% | 24,906 52% | 44,549 93%
Table VII: Vulnerabilities identified per category by each tool.
two categories.
Other
= # Access Control
40000 - = # Arithmetic 00 -
== # Denial of Service
Front Running
30000 - T # Reentrancy & 200 -
4 = #Time Manipulation H
‘g = # Unchecked Low Level Calls & 100 -
O 20000 - === # Contracts
H*
0-
10000 - 102 108 1010 10 101 102
Total balance (log)
0- Figure 3: Correlation between the number of vulnerabilities
2015-072016-012016-072017-012017-07 2018-012018-07 2019-012019-07 and balance in Wei (one Ether is 108 Wei).)
Creation date
Figure 2: Evolution of number of vulnerabilities over time. And lastly, Figure [3] presents the correlation between the

with a consensus of more than three tools. It is followed
by the Reentrancy category with 133 contracts receiving a
consensus of four tools or more. Unchecked Low Level Calls
is flagged by four tools or more in 52 contracts, Denial Of
Service and Other in 50 and 41, respectively. These results
suggest that combining several of these tools may yield more
accurate results, with less false positives and negatives.

The tool HoneyBadger is different: instead of detecting
vulnerabilities, it detects malicious contracts that try to im-
itate vulnerable contracts in order to attract transactions to
their honeypots. So, consensus with HoneyBadger suggests
the presence of false positives. We found that 15 contracts
identified by HoneyBadger with vulnerabilities of type Reen-
trancy have been detected by three other tools as Reentrancy
vulnerable.

We also analysed the evolution of the vulnerabilities over
time. Figure [2] presents the evolution of the number of vul-
nerabilities by category. It firstly shows the total number of
unique contracts started to increase exponentially at the end
of 2017 when Ether was at its highest value. Secondly, we
can observe two main groups of curves. The first one contains
the categories Arithmetic and Other. These two categories
follow the curve of the total number of contracts. The growing
number of vulnerable contracts seems to slow down from July
2018. Finally, this figure shows that the evolution of categories
Reentrancy and Unchecked Low Level Calls is extremely
similar (the green line of Reentrancy is also hidden by the
blue line of Unchecked Low Level Calls). This indicates that
there is a strong correlation between vulnerabilities in these

number of vulnerabilities and the balance of the contracts. It
shows that the contracts that have a balance between 10'* Wei
and 10%° Wei have more vulnerabilities than other contracts.
Per category, we have not observed any significant differences
worth reporting.

D. Execution Time of the Analysis Tools

In order to measure the time of the execution, we recorded
for each individual analysis when it started and when it ended.
The duration of the analysis is the difference between the
starting time and the ending time.

Table presents the average and total times used by
each tool. In the table, we can observe two different groups
of execution time: the tools that take a few seconds to execute
and the tools that take a few minutes. Oyente, Osiris, Slither,
SmartCheck are much faster tools that take between 5 and 34
seconds on average to analyse a smart contract. HoneyBadger,
Mythril, and Securify are slower and take between 1m24s and
6m37s to execute. The difference in execution time between
the tools is dependent on the technique that each tool uses.
Pure static analysis tools such as SmartCheck and Slither are
really fast since they only parse the AST of the contract to
identify vulnerabilities and bad practices.

Table VIII: Metrics of the tools

Tools | Average Total
1 | Honeybadger | 0:01:38 23 days, 13:40:00
2 Mythril | 0:01:24 46 days, 07:46:55
3 Osiris | 0:00:34 18 days, 10:19:01
4 Oyente | 0:00:30 16 days, 04:50:11
5 Securify | 0:06:37 217 days, 22:46:26
6 Slither 0:00:05 2 days, 15:09:36
7 SmartCheck | 0:00:10 5 days, 12:33:14

Total | 0:01:40 330 days and 15 hours

Securify and Mpythril analyse the EVM bytecode of the
contracts. It means that those tools require the contract to be
compiled before doing the analysis. The additional compilation
step slows down the analysis. The average execution time does
not reflect the complete picture of the performance of a tool.
Mpythril, for example, which has the best accuracy according
to our evaluation, takes on average of 1m24s to analyse a
contract. It is faster than Securify that only has an accuracy of
9% compared to the 27% of Mythril.

E. Precision of the Static Analysis Tools

For each tool output and contract analysed in Section [V-B}
we manually verified the issues identified by each tool on each
contract and labeled them as:

o True Positive (TP): Number of true positives, i.e. pieces
of code which are indeed vulnerable and the vulnerability
is identified by the tool;

o False Positive (FP): Number of false positives, i.e. a
vulnerability identified where it does not exist;

« False Negative (FN): Number of false negatives, i.e. the
tool failed to identify a vulnerability.

Since the notions above defined do not apply equally to
HoneyBadger, as it is a special case where a true positive
represents that the vulnerability does not exist (it detects
honeypots) and their sample of positives is not relevant (Hon-
eyBadger had a total of five positives), we decided to not
include it in this discussion to avoid confusion.

Applying the defined notions we can introduce other useful
measures to assess the performance of the static analysis tools:

« False Negative Rate (FNR): FNR = FN / (FN + TP)

« False Discovery Rate (FDR): FDR = FP / (TP + FP)

o Sensitivity = 1 - FNR

e Precision = 1 - FDR

After carefully analysing all contracts for vulnerabilities, we
identified a total of 167 vulnerabilities in the 69 contracts of
sBCURATED ' maple reflects all the metrics of each tool
regarding the execution of the analysis discussed in Section
[V-B] All informational outputs were not considered in the
collection of metrics. The same methodology followed in the
analysis presented in the previous section was followed.

Table IX: Metrics of the tools

Mythril | Osiris | Oyente | Securify | Slither | SmartCheck
TP 88 59 46 31 61 49
FP 78 39 44 35 22 27
FN 79 108 121 136 106 118
FDR 46,4% | 39.8% | 48,9% 53,0% | 26,5% 35,5%
FNR 473% | 64,7% | 72,5% 81,4% | 63,5% 70,7%
Precision 53,6% | 602% | 51,1% 47% | 73,5% 64,5%
Sensitivity | 52,7% | 35,3% | 27,5% 18,6% | 36,5% 29,3%

It is possible to verify that the amount of positives (TP
+ FP) of Mythril and Securify are not in line with the ones
presented in Table The reason is that Mythril and Securify
usually outputs the same vulnerability more than once, making
the amount of positives in Table [VI] bigger, as the analysis
discussed in Section [V-B] was automated and counts all the

execution output. Table [[X] does not take in account repeated
outputs, as it resulted from a manual analysis.

F. Results

Mythril shows the best sensitivity, having the most number
of true positives. As previously indicated by Table [V] it is the
one that flags more positives. It also seems to have the most
number of false positives. Slither is the tool that presents best
precision (73,5%), followed by SmartCheck.

VI. SMARTCHECK EXTENSION

The analysis presented in the previous Section showed us
that there is room for improvement for static analysis to
detect more vulnerabilities. Bad Randomness was one of the
categories that all of the tools failed to detect. In this section,
we propose to extended the tool SmartCheck [27] to enable
the detection of vulnerabilities related to Bad Randomness and
improve detection of Time Manipulation and Access Control.

SmartCheck runs lexical and syntactical analysis on Solidity
source code. It uses a custom Solidity grammar to generate
a XML parse tree as an intermediate representation (IR).
SmartCheck detects vulnerability patterns by using XPath
patterns on the IR. Our approach to improve SmartCheck
vulnerabilities detection is to investigate new rules and add
them, in the form of XPath patterns. One of the problems of
the SmartCheck approach, using XPath patterns, is that more
complex rules can not be precisely described using XPath.
So, when more complex cases are needed to be put in form
of XPath patterns they can easily lead to false positives.

We propose to add three more rules to SmartCheck to
improve an already established rule. Our first approach,
based on the analysis presented in Chapter [V] was to add
a rule to detect Bad Randomness issues called SOLID-
ITY BAD_RANDOMNESS. To do that, we created a XPath
pattern to detect the use of environment variables such as:
block.number, block.coinbase, block.difficulty, block.gaslimit,
blockhash and block.blockhash. We followed a similar ap-
proach to update the pattern SOLIDITY _EXACT_TIME, al-
ready included in SmartCheck, we modified the pattern to look
for expressions that contains block.timestamp or now, not only
when used in comparisons as previously defined. This rules are
straightforward and its goal is to simply detect the use of the
referred environment variables and to flag their use, acting as
a warning.

Regarding Access Control, SmartCheck only detects
tx.origin issues. We added a pattern to search for suicides (self-
destruct) and ownership transfers where the function misses
proper protection. To do that we constructed two rules patterns
inside a single rule named SOLIDITY _UNPROTECTED. To
detect unprotected issues we created a pattern to look for
all functions defined, excluding constructors, that do not
have standard modifiers defined, as onlyOwner, or require
statements protecting a value assignment to a variable defined
as owner or selfdestruct calls.

A. Results

We analysed sBCURATED ith SmartCheck Extended, us-
ing the same version used in the study presented in Chapter ??,
to set a fair ground of comparison. Table [X] compares the
results of SmartCheck, discussed in Section [V-B| and the
results obtained from executing SmartCheck Extended in the
same dataset, sBCURATED we can observe that our extension
is capable of detecting a total of 15 more issues, with regard
of the annotated vulnerabilities in SBCURATED, more than
doubling the capability of detection of SmartCheck without
our extension. With our proposed extension we can detect 24%
of the vulnerabilities annotated in SBCURATED ingtead of the
previous 11%.

Table X: Vulnerabilities identified per category by SmartCheck
and SmartCheck Extended in SBCURATED,

Category SmartCheck | SmartCheck Extended
Access Control 2/19 11% 4/19 21%
Arithmetic 1722 5% 1722 5%
Bad Randomness 0/31 5% 10/31 32%
Denial of Service 0/7 0% 0/7 0%
Front Running 0/7 0% 0/7 0%
Reentrancy 5/8 62% 5/8 62%
Short Addresses 0/1 0% 0/1 0%
Time Manipulation 1/5 20% 4/'5 80%
Unchecked Low Level Calls 4/12 33% 4/12 33%
Other 0/3 0% 0/3 0%
Total 13/115 11% . 28/115 24%

When taking in consideration the precision metrics pre-
sented in Section where all 167 vulnerabilities present
in SBCURATED 416 taken into account, our solution improves
15,1% in sensitivity and 5,1% in precision, as seen in Table

X1
Table XI: SmartCheck and SmartCheck Extended metrics.

SmartCheck | SmartCheck Extended
TP 49 74
FP 27 32
FN 118 93
FDR 35,5% 30,2%
FNR 70,7% 55,6%
Precision 64,5% 69,6%
Sensitivity 29,3% 44.4%

Table XII: Positives of SmartCheck Extended.

A. Control | B. Randomness | T. Manipulation
TP 2 10 13
FP 5 - -
Warnings - 37 4

Table divides all the vulnerabilities detected by our
extension in TP, FP or warnings. True positives map the
positives flagged from the 167 vulnerabilities taken in con-
sideration in Section False positives are the number of
issues flagged that are not true. Warnings are the number of
issues detected that are not mapped in the 167 vulnerabilities,
but also are not false positives. As previous stated, SOLID-
ITY_BAD_RANDOMNESS and SOLIDITY_EXACT _TIME are

meant to act as warnings and simply flag the use of sensitive
environment variables.

SmartCheck Extended is available on GitHub®] as a fork of
the original SmartCheck. It is also included in SmartBugs and
ready to executed.

VII. CONCLUSION

As smart contracts use grows, more vulnerabilities are
found and their impact becomes bigger. With our work we
contributed to improve the research on static analysis tools and
introduced new tools to facilitate research and automated anal-
ysis. We enumerated the state-of-the-art static analysis tools
available to verify smart contracts. We introduced SmartBugs,
an important contribution to automate and ease the execution
of smart contracts analysers. We also introduced SBCURATED,
a dataset of 143 annotated vulnerable Solidity smart contracts
with a defined vulnerability taxonomy that can serve as a
reference dataset to the research community.

Using SmartBugs, we were able to organize and easily exe-
cute 7 state-of-the-art tools to perform an empirical review on
47,587 Ethereum smart contracts. We discussed the results and
got important remarks and insights. We were able to detect that
Bad Randomness is a category of vulnerabilities overlooked
by the 7 tools reviewed, and thus we also contributed to the
field by extending SmartCheck to detect Bad Randomness
vulnerabilities and improved it by 15,1% in sensitivity and
5,1% regarding the non-extended version.

With our work we accomplished the objectives proposed
and all the topics mentioned in the research questions were
addressed, thus we are now able to provide a direct answer to
all the research questions:

Answer to RQ1. In our research we listed 35 state-of-the-
art tools currently available to analyse Ethereum smart con-
tracts. Further more we listed all their URLs and identified
the research paper if existent, we also reviewed 7 state-of-
the-art tools.

Answer to RQ2. In Table we established the precision
and sensitivity of six state-of-the-art tools. Slither showed
to be most precise and Mythril seems to have the most
sensitivity.

Answer to RQ3. In Table [V|are defined vulnerabilities iden-
tified per category by each tool. It seems that the categories
Other, Reentrancy, Arithmetic and Unchecked Low Level
Calls are the most detected. Table [VII] also reiterates it. With
this data we can also say that they seem to be the most
common type of vulnerabilities.

Answer to RQ4. The seven tools identify vulnerabilities in
93% of the contracts (in 44,589 contracts), which suggests
a high number of false positives.

8SmartCheck Extended: https:/github.com/pedrocrvz/smartcheck

https://github.com/pedrocrvz/smartcheck

Answer to RQS. On average, the tools take 1m40s to
analyze one contract. Slither is the fastest tool and takes
on average only 5 seconds to analyze a contract. We have
not observed a correlation between accuracy and execution
time.

Answer to RQ6. By presenting an extension of SmartCheck
in Sectiom [VI| we already contributed to improve a state-of-
the-art analysis tool.

[1]

[5]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review
of automated analysis tools on 47,587 ethereum smart contracts,” 2019,
https://arxiv.org/pdf/1910.10601.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” https:
//bitcoin.org/bitcoin.pdf| 2008.

G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1-32, 2014.

I. Nikoli¢, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proceedings of the
34th Annual Computer Security Applications Conference. New York,
NY, USA: ACM, 2018, pp. 653-663.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security. New York, NY, USA: ACM,
2016, pp. 254-269.

M. di Angelo and G. Salzer, “A survey of tools for analyzing ethereum
smart contracts,” in 2019 IEEFE International Conference on Decentral-
ized Applications and Infrastructures (DAPPCON). Newark, CA, USA,
USA: IEEE, April 2019, pp. 69-78.

S. Azzopardi, J. Ellul, and G. J. Pace, “Monitoring smart contracts:
Contractlarva and open challenges beyond,” in Runtime Verification,
C. Colombo and M. Leucker, Eds. = Cham: Springer International
Publishing, 2018, pp. 113-137.

R. Norvill, B. B. F. Pontiveros, R. State, and A. Cullen, “Visual emu-
lation for ethereum’s virtual machine,” in NOMS 2018-2018 IEEE/IFIP
Network Operations and Management Symposium. Taipei, Taiwan:
IEEE, 2018, pp. 1-4.

Y. Zhou, D. Kumar, S. Bakshi, J. Mason, A. Miller, and M. Bailey,
“Erays: Reverse engineering ethereum’s opaque smart contracts,” in 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 1371-1385. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity 1 8/presentation/zhou
H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, “S-gram: towards
semantic-aware security auditing for ethereum smart contracts,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. New York, NY, USA: ACM, 2018, pp. 814-819.
I. Grishchenko, M. Maffei, and C. Schneidewind, “A semantic frame-
work for the security analysis of ethereum smart contracts,” in Principles
of Security and Trust, L. Bauer and R. Kiisters, Eds. Cham: Springer
International Publishing, 2018, pp. 243-269.

E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey, “Ethir: A
framework for high-level analysis of ethereum bytecode,” in Automated
Technology for Verification and Analysis, S. K. Lahiri and C. Wang,
Eds. Cham: Springer International Publishing, 2018, pp. 513-520.

A. Mavridou and A. Laszka, “Tool demonstration: Fsolidm for designing
secure ethereum smart contracts,” in Principles of Security and Trust,
L. Bauer and R. Kiisters, Eds. Cham: Springer International Publishing,
2018, pp. 270-277.

T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts
devour your money,” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER). Klagenfurt,
Austria: IEEE, 2017, pp. 442-446.

C. F. Torres, M. Steichen, and R. State, “The art of the scam:
Demystifying honeypots in ethereum smart contracts,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 1591-1607. [Online]. Available: https:
/Iwww.usenix.org/conference/usenixsecurity 19/presentation/ferreira

10

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(34]

[35]

E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu et al., “Kevm: A complete
formal semantics of the ethereum virtual machine,” in 2018 IEEE 31st
Computer Security Foundations Symposium (CSF). Oxford, UK: IEEE,
2018, pp. 204-217.

N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “Madmax: Surviving out-of-gas conditions in ethereum smart
contracts,” Proceedings of the ACM on Programming Languages, vol. 2,
no. OOPSLA, p. 116, 2018.

M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” 2019.

B. Mueller, “Smashing ethereum smart contracts for fun and real profit,”
in 9th Annual HITB Security Conference (HITBSecConf). Amsterdam,
Netherlands: HITB, 2018.

C. F. Torres, J. Schiitte et al., “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th Annual Computer
Security Applications Conference. New York, NY, USA: ACM, 2018,
pp. 664-676.

M. Suiche, “Porosity: A decompiler for blockchain-based smart con-
tracts bytecode,” DEF con, vol. 25, p. 11, 2017.

C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
finding reentrancy bugs in smart contracts,” in Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings. New York, NY, USA: ACM, 2018, pp. 65-68.

E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and
H. Kurihara, “Security assurance for smart contract,” in 2018 9th IFIP
International Conference on New Technologies, Mobility and Security
(NTMS). Paris, France: IEEE, Feb 2018, pp. 1-5.

J. Chang, B. Gao, H. Xiao, J. Sun, and Z. Yang, “scompile: Critical path
identification and analysis for smart contracts,” 2018.

P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. New York, NY, USA: ACM, 2018, pp. 67—
82.

J. Feist, G. Greico, and A. Groce, “Slither: A static analysis framework
for smart contracts,” in Proceedings of the 2Nd International Workshop
on Emerging Trends in Software Engineering for Blockchain, ser.
WETSEB ’19. Piscataway, NJ, USA: IEEE Press, 2019, pp. 8-15.
[Online]. Available: https://doi.org/10.1109/WETSEB.2019.00008

S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in 2018 IEEE/ACM 1Ist International Work-
shop on Emerging Trends in Software Engineering for Blockchain
(WETSEB). Gothenburg, Sweden, Sweden: IEEE, 2018, pp. 9-16.

P. Hegedus, “Towards analyzing the complexity landscape of solidity
based ethereum smart contracts,” Technologies, vol. 7, no. 1, p. 6, 2019.
J. Krupp and C. Rossow, “teether: Gnawing at ethereum to
automatically exploit smart contracts,” in 27th USENIX Security
Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, Aug. 2018, pp. 1317-1333. [Online]. Available: https:
/Iwww.usenix.org/conference/usenixsecurity 1 8/presentation/krupp.

L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
and B. Scholz, “Vandal: A scalable security analysis framework for smart
contracts,” 2018.

S. K. Lahiri, S. Chen, Y. Wang, and I. Dillig, “Formal specification and
verification of smart contracts for azure blockchain,” 2018.

S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: analyzing safety
of smart contracts,” in 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA, February
18-21, 2018. San Diego, California, USA: NDSS, 2018, pp. 1-15.

I. Grishchenko, M. Maffei, and C. Schneidewind, “A semantic frame-
work for the security analysis of ethereum smart contracts,” in Principles
of Security and Trust, L. Bauer and R. Kiisters, Eds. Cham: Springer
International Publishing, 2018, pp. 243-269.

D. Perez and B. Livshits, “Smart contract vulnerabilities: Does anyone
care?” 2019.

NCCGroup, “Decentralized application security project (or dasp) top
10,” https://dasp.co, 2018.

https://arxiv.org/pdf/1910.10601
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/zhou
https://www.usenix.org/conference/usenixsecurity19/presentation/ferreira
https://www.usenix.org/conference/usenixsecurity19/presentation/ferreira
https://doi.org/10.1109/WETSEB.2019.00008
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://dasp.co

	Introduction
	Objectives and Contributions

	Background
	Blockchain
	Smart Contracts
	Ethereum
	Static Analysis Tools

	SmartBugs
	Availability
	sbcurated: A Dataset of 143 Vulnerable Smart Contracts
	sbcurated Statistics

	Framework Architecture
	Methodology for adding tools
	Methodology for filtering bugs
	CLI & WUI

	Analysis of 47,587 Smart Contracts
	Tools' Setup
	sbcurated: Analysis of 69 Smart Contracts
	sbwild: Vulnerabilities in Production Smart Contracts
	Execution Time of the Analysis Tools
	Precision of the Static Analysis Tools
	Results

	SmartCheck Extension
	Results

	Conclusion
	References

